

Sample size planning using Predictive Accuracy Analysis For (V)AR(I) models in the context of N=I

Jordan Revol Ginette Lafit Eva Ceulemans

10/06/2023

2.57

1.28

3.35

VAR(1) models

• For N=1 and 2 variables:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_t = \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix} + \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_{t-1} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}$$

$$\text{with:} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix} \sim N \begin{bmatrix} 0 \\ 0 \end{bmatrix} , \begin{bmatrix} \sigma_{\varepsilon_1}^2 & \sigma_{\varepsilon_1 \varepsilon_2} \\ \sigma_{\varepsilon_2 \varepsilon_1} & \sigma_{\varepsilon_2}^2 \end{bmatrix}$$

 \rightarrow Errors follow multivariate normal distribution with variance-covariance Σ

How many timepoints?

• Power

Simulation-based approach

How many timepoints?

• Power:

- Parameter specific
- Focus on the effect(s) of interest

Example for 2 variables

How many timepoint?

• Power:

- Parameter specific
- Focus on the effect(s) of interest
- Prediction accuracy:
 - Focus on the whole model: "how well will my model perform on unseen data?"
 - Usually MSPE → Issue
 - \nearrow $T_{\text{training}} = 7$ Predictive accuracy
- PAA: Optimize the number of timepoints (*T*_{training}) to have a *good probability* to achieve a *good predictive accuracy*

Simulation-based comparison

Step 3 of PAA

- Steps:
 - **3.1** Compute Mahalanobis distance using true Σ*(standardization)*
 - **3.2** Compute proportion of prediction errors < 95th percentile of the χ^2 distribution with df = #variables

Step 3 of PAA

- Steps:
 - 3.1 Compute Mahalanobis distance using true Σ (standardization)
 - 3.2 Compute proportion of prediction errors < .95 quantile of χ^2 (#vars)

- For high *T*_{training}:
- For smaller *T*_{training}:

Steps 3 and 4 of PAA

- Steps:
- Good predictive accuracy
- Probability to reach it
- 3.1 Compute Mahalanobis distance using true Σ (standardization)
 3.2 Compute proportion of prediction errors < .95 quantile of χ²(#vars)
 3.3 Define performance threshold: .94
 4. Compute expected predictive accuracy (EPA)
 - Looking for **.8** proportion of replicates that reach performance

Results

	Power	Predictive accuracy (PAA)
Complexity of the model (#vars)	-	°لا
Auto-regressive	∕7*	°لا
Cross-regressive	א≮	°لا
Intercept	N *	_
Variance		_`
Covariance		_`

- Complement power
- Warning: Predictive purpose

Whole model
Parameter specific
Standardized

Apps

- R: Shiny app
- Julia: Dash app

V	=			
atio	n			
ict	This shiny app is based on Jordan	et al. (???). Its purp	is to perform a predictive accuracy analysis (PAA) for VAR(1) models in a N=1 context.	
ľ	A. Simulation parameters		+ PAA Power	
l	B. Predictive Accuracy Ana parameters	alysis (PAA)	+ 0.9 three	; • maha0.95_0.01
	C. Power analysis		+ 0.7-	
	D. Model parameters:		- 0.5- 0.5-	
	Number of variables		0.4-	
	2 Intercepts matrix		0.3- 40 60 80 100 120	
	Y1	Y2		
	Psi matrix:	5		
	Y1	Y2		
	Y1 .6	.3		
	Y2 .2	.4		
	Sigma matrix:			
	Y1	Y2		
	Y1 10	.3		
	Y2 3	7		

Thanks for your attention

jordan.revol@kuleuven.be

Step 2 of PAA

• Generate data

Results: Parameters' influence

power ar₁₁ _____ power ar₂₂ _____ power cr₂₁ _____ power cr₁₂ _____

Expected Predictive Accuracy

Parameters' power

Results: Parameters' influence

